Evolutionary Network Minimization: Adaptive Implicit Pruning of Successful Agents

نویسندگان

  • Zohar Ganon
  • Alon Keinan
  • Eytan Ruppin
چکیده

Neurocontroller minimization is beneficial for constructing small parsimonious networks that permit a better understanding of their workings. This paper presents a novel, Evolutionary Network Minimization (ENM) algorithm which is applied to fully recurrent neurocontrollers. ENM is a simple, standard genetic algorithm with an additional step in which small weights are irreversibly eliminated. ENM has a unique combination of features which distinguish it from previous evolutionary minimization algorithms: 1. An explicit penalty term is not added to the fitness function. 2. Minimization begins after functional neurocontrollers have been successfully evolved. 3. Successful minimization relies solely on the workings of a drift that removes unimportant weights and, importantly, on continuing adaptive modifications of the magnitudes of the remaining weights. Our results testify that ENM is successful in extensively minimizing recurrent evolved neurocontrollers while keeping their fitness intact and maintaining their principal functional characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

Adaptive rank filtering based on error minimization

A method for adaptive (on-line) pruning and constructing a (layered) computational network is introduced. The dimensions of the network are updated for every new available sample, which makes this technique highly suitable for tracking nonstationary sources. This method extends work on predictive least squares by Rissanen [1] and Wax [2] to an adaptive updating scheme. The algorithm is demonstr...

متن کامل

Variable Structure Neural Networks for Adaptive Robust Control Using Evolutionary Artificial Potential Fields

A novel neural network architecture, is proposed and shown to be useful in approximating the unknown nonlinearities of dynamical systems. In the variable structure neural network, the number of basis functions can be either increased or decreased with time according to specified design strategies so that the network will not overfit or underfit the data set. Based on the Gaussian radial basis f...

متن کامل

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003